コラム

地質時代 第13号 平成29年10月15日発行

法隆寺五重塔

法隆寺の制耐震技術の脅威

柿食えば 鐘が鳴るなり 法隆寺
  世界最古の木造建築物である法隆寺は仏教布教のため聖徳太子によって608年建立された。「大化の改新」では仏教興隆の恩人である蘇我氏が滅ぼされた。670年落雷にて消失。すぐに再建された。1600~1606年慶長大修理、1692~1707年桂昌院による大修理、明治時代の{廃仏毀釈}では回廊内に牛馬を繋がれる状況に陥った。昭和の大修理(1933~1953年)で当初に近い復元ができた。様々な政変を乗り越えさせた原動力は日本人の「聖徳太子」信仰が法隆寺を守り続けたかのようだ。

法隆寺を支える地盤について
  法隆寺はマグニチュード7.0以上の地震を46回も経験し、乗り切ってきた。その最大の要因は、地形地質である。この地域は砂礫質台地と呼ばれる地形で、隆起によって生じた段丘を形成し、表層に約5m以上の砂礫層、砂質土層を持つ安定した地盤。つまり揺れにくく、液状化しない場所を選定したことになる。建設担当者に地盤や基礎に対する経験と知識があったことは間違いない。

日本独自の建築技術「心柱」の確立
 第一は、日本は雨の多い国で中国の年間降雨量の約2倍だ。このため、雨水が建物から流れ落ち、土台周辺の土壌に降り注ぐと、五重塔がいずれ沈んでしまいかねない。これを防ぐために、大工たちは、庇を壁からかなり離して長く造った。建物の全幅の50%以上にもなる軒だ。この巨大に張り出した部分を支えるために、片持ち梁を庇ごとに採用している。
 第二は、建造物の著しい燃えやすさへの対抗策として、庇には瓦が積まれ、木造建築物に火が燃え広がらないようになっている。
 第三は、法隆寺の五重塔は、現代建築に見られるような、中央の耐力柱がない。上に行くほど細くなっていく構造のため、耐力垂直柱で繋げている部分は一つもない。 各階が強固に繋がっているわけではなく、ただ単純に重ねたところを取り付け具でゆるく留めているのみなのだ。この構造は実際、地震国では大変な強みになる。地震の際、上下に重なり合った各階がお互いに逆方向にくねくねと横揺れするため、強固な建物にありがちな揺れ方はせず、振動の波に乗った液体のような動きになる。
 第四に、一方で、あまりにも各階が柔軟になりすぎるのを避けるために、大工たちは、とある独創的な解決法に行き着いた。これが心柱だ。見た目は、大きな耐力柱のようだが、実際にはこれは建物の重さをまったく支えていない。心柱は、まさに自由な状態で吊り下げられているだけなのだ。心柱は、大型の同調質量ダンパーの役割となって、地震の揺れを軽減する助けとなっている。各階の床が心柱にぶつかることで、崩壊するほどの横揺れを防ぎ、揺れもいくらか吸収している。言うなれば、基本的には、十分な質量のある不動の振り子であり、より軽い各階の床があまりに自由に横揺れしすぎないように歯止めをかけている。
現在でも、これと同じダンパー技術が使われているスカイツリーのほかに台北101(台北国際金融センター)は、92階から巨大な、730トン4階分の鋼鉄の振り子をぶら下げ、強風でビルが横揺れするのを防いでいる。ニューヨークのシティコープ・センターもまた、ハリケーンの際の揺れを防ぐのに、400トンのコンクリート・ブロックを使用している。

 

教科書から消える聖徳太子 歴史が英雄をつくる! 聖徳太子的人物の存在が・・・

 

聖徳太子から福沢諭吉へ

 聖徳太子の業績は、冠位十二階、憲法十七条、遣隋使派遣などが上げられますが、歴史研究の発展により、実はこれらは、太子一人の実績ではないことが明らかになってきたようです。そこで教科書では、聖徳太子の表記を止め、厩戸王と表記するようになったようです。しかし、この時代の天皇の摂政として存在していたのは確かなようですが1万円札の肖像としての復帰は難しいかも知れません。

仏教による国づくりの象徴としての聖徳太子

 当時の日本が国づくりを進める中で、大陸の宗教や立法、身分制度を参考にしたのは間違いない。しかし、それは自然に入ってくるものではなく、明確な目的意識と行動を必要としたはずだ。それを取り入れた英雄こそ、聖徳太子的な人物だったのではないだろうか?(もし、ナポレオンが生まれてこなかったら、歴史は別のナポレオンを生み出した)

大工の神様 聖徳太子

 11月22日は「大工さんの日」です。11月が「技能尊重月間」、十一を合せると「建築士」の「士」の字になること。22日が聖徳太子の命日(622年2月22日)さらに11は二本の柱、二は土台と梁と見なして「大工さんの日」としたようです。 孟子の教えに「規矩準縄(きくじゅんじょう)」という言葉があります。物事や行動の基準、手本を正しくすることを意味するとのこと。 ここから発して大工の伝統技術に規矩術(きくじゅつ)というものがあり、大工の数学のようなもので、「規」とは「円を描く」、「矩」とは「方向、直角」、「準」とは「水平」、「縄」とは「垂直、鉛直」ということを意味し、家造りの最も基本となるキーワードです。更に、大工道具のことも指しているそうで、『規=定規』『矩=差し金』『準=水盛り』『縄=墨縄』となります。 この中の『矩=差し金』を日本に持ち込んだのが聖徳太子とのことです。 法隆寺のような建造物を初めて日本に作るためには、道具と技術の伝承は絶対的に必要だったことは間違いない。 道具は現物でよいが、技術はどうしたのか?聖徳太子は太子講といって、大工を集めて建築の講義のようなものをしていたそうです。 当時の政治家はテクノロジーの優れた伝承者でもあったようです。

地質時代 第12号 平成29年9月15日発行

住居の変遷から見る日本史

縄文時代の平和

 

 数年前、青森県を旅行した際、三内丸山遺跡を見学する機会があった。この遺跡は日本最大級の縄文集落跡で、今から5,500年~4,000年前のもので、竪穴住居跡、大型竪穴住居跡、大人や子供の墓、掘立柱建物跡などがあり、当時の集落の生活環境が具体的にわかる契機となった。特に私が感動したのは、墓と大型竪穴住居であった。墓は通路の両脇に2列に配置され、仲間にいつも見守られている風であった。大型竪穴住居はおそらく集会所であったようだ。内装も再現されていたが、身分の上下、貧富の差をまったく感じさせない。 そして何よりも、この集落が1,500年も続いたことである。よっぽど居心地がよかったのだろう。環境と共存し、共同体が機能し、近隣とも仲良くやっていたのだ ろう。

三内丸山遺跡 掘立柱建物

三内丸山遺跡 大型竪穴住居

大型竪穴住居の内部

 

戦う弥生人

 弥生時代の遺跡として有名なのが佐賀県の吉野ヶ里遺跡である。この時代の集落の特徴は、環濠集落と呼ばれ濠や塀で何重にも防御され、日本には400以上の遺跡が確認されている。中でも吉野ヶ里遺跡は、700年続いた弥生時代(紀元前5世紀から紀元3世紀)のすべての遺構・遺物が発見されており、弥生時代の象徴とも言える遺跡だ。

 弥生時代前期(BC5世紀~BC2世紀)吉野ヶ里一帯に分散的に「ムラ」が誕生、その一部に環濠を持った集落が出現し、「ムラ」から「クニ」への発展の兆しが見えてくる。
弥生時代中期(BC2世紀~AC1世紀)大きな外環濠ができ、首長を祀る「墳丘墓」や「甕棺墓地」が見られ「争い」の激化が見られる。
弥生時代後期(1世紀~3世紀)国内最大級の環濠集落へ発展。特に環濠に内郭と外郭が生まれ身分による住み分けが定着した。権力の強化に伴い建物の大型化が進んだ。

吉野ヶ里遺跡 環濠集落

吉野ヶ里遺跡 首領を中心にした会合

 

 

 

 

 

 

 

 

 

 

奈良時代の官僚と都市計画

 1986年奈良市街の一角から長屋王(676年~729年)の広大な邸宅跡が発見された。敷地は67,000平米。内部も板塀で区画され、大勢の使用人や職人も住み込んでいた。長屋王は左大臣で朝廷の最高機関の責任者であった。武士が生まれる前の時代、皇族出身の官僚が「クニ」を支配するために、厳格な身分制度と土地の区画と分割が重要だったようだ。他方、庶民は竪穴住居で暮らしていた。
 当時の人々の暮らしの有様を、万葉歌人のひとり山上憶良(660年~733年)は「貧窮問答歌」に詠んだ。
 フセイホのマゲイホの内に 直土に 藁解きて
 父母は 枕のほうに 妻子どもは 足の方に 囲み居て
 憂へ吟ひ
(地面に這いつくばるような粗末な家に、土の上に藁を敷いて家族が寝て居る様が物悲しい)
 山上憶良は、文学に造詣が深かった長屋王の屋敷に出入りしていた。貴族の住まいと庶民の住まいを目にした憶良だからこそ、詠んだ歌であった。
(日本住居史 小沢朝江、水沼淑子著 吉川弘文館参照)

長屋王邸宅の復元模型

平城京の土地区画は身分制と密接に結びついていた

 

 

 

大林組プロジェクトチーム(PT)による三内丸山遺跡の工学的分析

①人口の想定 : 常時住んでいた住民の人口を400~500人とした。大型建造物の建設を可能にするには、一人あたりの作業負担量を25~30キロとして、1回の仕事量 を6~7トンとすれば、実際の重労働に参加できる成人男性の数は200~280人となり、総人口はその倍になるという勘定だ。
②土木工事の想定復元 : 縄文時代の常識からすればケタ違いの土木作業の痕跡が幾つも認められる。一つは道路である。日本最初で最古の土木工事の施工例だ。 その施工の規模は以下のようになる。
A.盛り土の土量(平均値を採用) 1,600立方㍍
B.施工に必要な員数(モッコ)1,824人工+敷き均しと締め固め267人工 合計すると3,691人がこの施工に必要な延べ員数となる。
③建物の想定復元 :大型の掘立柱建物跡以外にも、三内丸山遺跡では多くの建物跡が発掘されている。多くは通常の竪穴式住居跡だが、その中に、倉庫と見られる高床式の建物や、超大型の竪穴式大型住居跡(通称ロングハウスと呼ばれる。)も見つかっている。偉容とよぶにふさわしい姿である。それは大変な手間と計画を要求された施工であっただろうと思わせられる。 当時、これだけのものをつくることができたばかりでなく、これだけのものを必要とした人々、あるいはその生活を営んだ人々であったことを思うと、ここでも驚きを禁じ得ない。
《掘立柱建物の復元》(1面写真参照)
三内丸山遺跡における建造物で全国の注目を集めたのは、何と言っても掘立柱建物である。全てクリの木であった事も判明している。
①柱の材質(クリ)による高さの想定。青森周辺で高さ20㍍のクリの木が発見された。 縄文時代には、当然それ以上のクリの木が原生していたものと考えられる。
②柱穴を土質工学の見地から考察する。 発見された6つの柱穴は、正確に4.2㍍の間隔をとり2列に並んでいる。深さは2~2.5㍍も掘り下げられており、6つのうち4つに木柱根が残っていた。木柱根は0.9~1㍍程の径で最大のものは103cmであった。高さは50~65㌢ほどが残っていた。現在までに判明している考古学的な 事実は次の2点である。
●クリの木の立て方はそれぞれが、列の内側へ角度2度ほど傾いており、計画的かつ意図的なものであって、柱を立てる際に重心が穴の中心より外側へ来るようずらして設置されていた。
●柱を立てる際に、砂と粘土質土を交互に入れて突き固める技法がとられており、これによって柱がより固定されるようになっていた。PTは、柱が建っていた穴の底を同じ位置の(深度の)、他の外周部の土と柱の底の土を、以下の調査で比較を行い、穴底の土にどれだけの圧力が掛かっていたかを調べれば、5000年前当時の柱の重量が解明できると仮定した。
1.地層の確認
2.標準貫入試験(N値)
3.物理特性(比重、含水状態、粒土分析)
4.力学特性(一軸圧縮の強さ、粘着力、圧密先行応力)
その結果、1平方㍍に16㌧の荷重が加わっていたようだ。
ここから導き出される柱の木の長さは、最小14㍍、最大23㍍という事になる。しかし、柱は先端部分になるに従って次第に細くなっていく ものであり、それを勘案すると柱の高さは、実に25㍍に達する可能性がある。
PTでは、これが単独で建っていた柱の可能性を検証しているが、結論から言うと単独の柱としては不安定で建造物として成り立たない、何らかの構造をもった建造物としての検証に進む。諸検証の結果、復元する建物の規模は、軒高が14㍍、最高部(屋根頂部)で17㍍、そして木柱の長さは掘立て部位も含めて16.5㍍となった。建物の総重量は約71㌧の規模となり、この構造だと荷重は1平方㍍あたり16㌧ちかくになり、地盤調査の結果とも整合性がとれる。
また柱の高さが約17㍍とすると風に対する抵抗の面からも一番都合がいい。この三内丸山遺跡のある津軽地方に吹く季節風は、ほぼ一年中、津軽半島と八甲田山系の間を南南西に吹いており、この大型掘立柱建物も長軸を南西-北東方向に向けており、風に対する抵抗が一番少なくすむように建てられている。 古代縄文の人々は、風向きや風力に対しての妥当な高さについて知識を持っていた。また4本柱より6本柱の方が、風に対するたわみが少なくより堅固に建っている事ができる。
いずれにせよ、今回大林組PTが行った三内丸山遺跡の復元作業は、「建築学」という観点から試みられたものだけに、今までにない新しい多くの示唆を含んでいる。歴史学の発展に新たなアプローチが加わったと言っていいだろう。

地質時代 第11号 平成29年8月発行

治水の神様禹王と田中丘隅

異常気象による局地的豪雨や台風の頻発により、日本の土木事業、なかでも治水事業の重要性がますます増してきている。人類の歴史は自然との闘いと共存であった。それは、中国の神話時代(堯、舜など)の逸話の中に現れている。


禹王の伝説
禹は大洪水の後の治水事業に失敗した父の後を継ぎ、舜帝に推挙される形で、黄河の治水事業に当たり、功績をなし大いに認められた。2016年8月に科学雑誌『サイエンス』に掲載された研究結果によると、この大洪水は紀元前1920年に起こったという。
舜は、名は文命、姓は姒(じ)と称していたが、王朝創始後、氏を夏后とした。
禹は即位後暫くの間、武器の生産を取り止め、田畑では収穫量に目を光らせ農民を苦しませず、宮殿の大増築は当面先送りし、関所や市場にかかる諸税を免除し、地方に都市を造り、煩雑な制度を廃止して行政を簡略化した。その結果、中国の内はもとより、外までも朝貢を求めて来る様になった。更に禹は河を意図的に導くなどして様々な河川を整備し、周辺の土地を耕して草木を育成した。
 時が過ぎ、紀元前4世紀ころ活躍した孟子は、楊朱(儒家や墨家に対抗した個人主義的思想家)という人物を批判して「楊朱という奴は、すねの毛を一本抜けば天下が救われるという場合でも、その毛一本さえ抜かない」と言った。その意味は、楊朱は自分のことしか考えない奴だ、ということだ。これは、禹が治水のため泥の中を這い回った結果、すねの毛が全部抜け落ちたという話が前提になっている。


田中丘偶の業績
郷土歴史家の大脇良夫氏の調査では、日本全国22箇所に中国古代の伝説の王朝、夏(紀元前2100年~1600年ごろ)の開祖禹王の名が記された治水碑及び地名があるという。その中に、神奈川県酒匂川の治水神として、禹王が祀られている。南足柄市大口の福沢神社に文命東堤碑と文命宮が地元有志の手によって守られている。この文命宮を作ったのが田中丘偶(1662~1730)であった。
田中丘偶は今のあきる野市に商人の子として誕生、22歳の時、東海道の宿場のひとつ・川崎宿で下本陣をつとめていた田中兵庫(たなかひょうご)の娘むことなり、45歳で田中家を相続。六郷の渡しの独占権を獲得するなど、財政難だった川崎宿をみごとに再建させた兵庫が、河川土木の勉強を始めたのは50歳を過ぎてから。江戸時代の有名な学者荻生徂徠(おぎゅうそらい)に学び、民衆の視点で治水などについて意見した「民間省要(みんかんせいよう)」が8代将軍吉宗に認められ、幕府の治水事業に携わるようになったのは61歳の時だった。
 丘隅は、享保9(1724)年から多摩川下流右岸の大丸用水と稲毛川崎二ケ領用水の改修、下流右岸の小杉の瀬替え(蛇行部のショートカット)、享保14(1729)年からは下流の連続堤の築堤を行い、「丘隅をして多摩川流という河川土木技術を起した」(「新多摩川誌」)と言われるほど、全国の河川土木技術に大きな影響を与えた。
 丘隅の最後の仕事となったのが現在の川崎区旭町あたりから大師河原までの多摩川下流右岸の堤防改修工事。この工事によって、多摩川の下流部の連続堤が完成したものと見られ、今も多摩川の下流部にえんえんと続く堤防の基礎がつくられた。この田中丘偶の業績を見るとき、その根底には治水事業によって民を守った禹王への崇拝が見て取れる。つまりは禹王と孟子の思想が田中丘偶の思想になり、この思想が物質的な力となって丘偶をしてこの治水事業を動かしたのではないだろうか?

井 戸 の 歴 史 を 探 る

最近、江戸川区役所から防災用井戸を落札することができた。そこで、井戸の歴史を調べてみた。
世界最古の井戸は、アメリカ・ニューメキシコ州のクローヴィス遺跡にあるもので、紀元前1万1500年ごろ、直径は60cm、深さは1.4m。クローヴィス文化は石期(旧石器時代に相当)、狩猟と採集にたよる生活で、パレオ・インディアンと呼ばれた。
 日本最古の井戸は、鹿児島県にある玉乃井。神武天皇の祖父山幸彦が豊玉姫と出会った場所がこの井戸らしい。しかし、神話に関しては、出雲地方も黙っていない。大国主大神が八上姫に産ませた御子に産湯をさせるため三つの井戸(生井、福井、綱長井)を掘った。
二つの神話の共通点は、男女の出会いの場=生命の根源が井戸という場所にふさわしいということか。

愛媛県西条市の自噴井戸
愛媛県西条市のHPに「水の歴史館」がある。これは、西条市が豊かな水環境を持ち、この水の文化を大切にしていることが伺える。西条市では江戸時代後期から「ぬきうち」工事が盛んに行われている。その代表的工法が「金棒掘り」で十字に組んだ丸太棒を万力のような金具で金棒に接続し、13~14人ぐらいで所定の高さまで持ち上げては落とすという掘削方法(金棒を使った人力による肩掘り)だった。
西条市内には、広範囲に地下水の自噴井があり、これらは「うちぬき」と呼ばれており、その数は約3,000本といわれている。
 その昔、人力により鉄棒を地面に打ち込み、その中へくり抜いた竹を入れ、自噴する水(地下水)を確保した。この工法は、江戸時代の中頃から昭和20年頃まで受け継がれてきました。「うちぬき」の名の由来である。
 現在は、鉄パイプの先端を加工し、根元に孔を開けたものをコンプレッサーによるエアーハンマーを使用して、地下水層まで打ち込み、地下水を取水している。
 「うちぬき」の一日の自噴量は約9万m3におよび、四季を通じて温度変化の少ない水は生活用水、農業用水、工業用水に広く利用されている。この「うちぬき」は、名水百選に選定されている。

世界最古のクローヴィス遺跡の井戸

鹿児島県の玉乃井

出雲の生井

江戸後期 三本櫓による金棒掘り

地質時代第10号 平成29年7月発行

九州北部豪雨による土砂災害

異常気象が地形を変える
 梅雨前線や台風第3号の影響により、九州北部地方を中心に局地的に猛烈な雨が降り、大雨となった。特に、7月5日から6日にかけては、対馬海峡付近に停滞した梅雨前線に向かって暖かく非常に湿った空気が流れ込んだ影響で、九州北部地方で記録的な大雨となった。これまでの1時間の最大雨量は、福岡県朝倉(あさくら)で129.5ミリ、長崎県芦辺(あしべ)で93.5ミリ、高知県大栃(おおどち)と大分県日田(ひた)で87.5ミリを観測するなど猛烈な雨となったところがある。これまでの24時間の最大雨量は、福岡県朝倉で545.5ミリ、長崎県芦辺で432.5ミリ、大分県日田で370.0ミリとなるなど、九州北部地方では350ミリを超える記録的な大雨となっている地域がある。 この豪雨の影響で山間部の急斜面が崩れ、大量の土砂と立木を下流部に押し流し、死者32名(7月15日現在)を超える大災害となってしまった。これは、局地的に大雨を降らす地球温暖化が引き金になっていることは間違いない。

大分県日田市大肥本町の被災状況



世界最大の地滑り事故は地質技術者の失敗から
 1960年、イタリア北東部のバイオント川の渓谷に262mの提高のダムが建設された。貯水直後から地滑りが頻発するようになり、ついに1963年10月9日大規模な地滑りが発生した。貯水湖になだれ込んだ土砂に押流され水が津波となってダム下流の集落に壊滅的被害(死者2500人)をもたらした。2008年ユネスコは地球科学の理解が重要であることを示す『五つの教訓と五つの朗報』の教訓の筆頭に「技術者と地質学者の失敗」によって引き起こされた事例としてこのバイオントダム災害をあげ、山腹の地質に対する適切な理解があれば防ぎえたとした。ダムと豪雨では経緯はまったく違うが、山腹の地質的な理解については同じ問題をはらんでいて、地球温暖化によるゲリラ豪雨と日本の地形的特性を理解し、適切な砂防対策が求められる。あらゆる土砂災害の土台には、地質に対する科学的知識と責任感が何よりも求められることを教えている。

災害後のバイオントダム

砂防の歴史
 万葉集の時代、藤原宮造営時(676年~704年)に社寺の建築のため田上山(滋賀県大津市)等から良材を伐採した様子が万葉集に歌われている。
石走る 近江の国の 衣手の 田上山の 真木さく 桧のつまでを もののふの 八十宇治川に 玉藻なす 浮かべ流せれ その後、山腹の荒廃が深刻化したと思われる。
 明治維新後、荒廃した山腹を改良するために、藩政時代の技術革新をはかるためオランダを中心に外国人技術者が招聘された。なかでも明治6年(1873年)に来日したヨハネス・デレ-ケは、17種の工法を案出するとともに、日本各地の流域を踏査し、30年の長きにわたり、わが国砂防工事の指導を行った。 ヨーロッパの砂防技術の導入により、内務省技師であった赤木正雄の手により更なる発展を遂げた。彼の設計した成願寺川の白岩砂防堰堤が有名である。
 全国に52万5307箇所の土砂災害危険箇所があり(平成14年現在)、そのうち最も多いのは、広島県の3万1987箇所、ついで島根県、山口県、兵庫県と続き、大分県が1万9640箇所と5番目に多くなっている。

ヨハネス・デレーケ像

赤木正雄技師による白岩砂防堰堤

 

地質時代 第9号 平成29年6月発行

利根川東遷の舞台裏

関東の連れ小便
 1590年夏、秀吉は、一夜城で知られる小田原石垣山の山頂で放尿しながら、家康に関東八カ国(相模、武蔵、上野、下野、上総、安房、常陸)と家康所領(駿河、遠江、三河、甲斐、信濃)との国替えの話を持ちかけた。銀座の一等地からアマゾン奥地の交換を持ちかけられたようなものだった。当事、江戸城の東と南は海、西側は茫々たる萱原、北だけが緑色に盛り上がった台地であった。しかし、北側から何本もの川が流れ込み、江戸を泥地にしていた。秀吉としては家康の力を削ぐつもりだった。家康の家臣団はこぞって反対した。しかし、家康はこれを受けた。土木的は知識も少なかった時代、これは地政学的な戦略や何か展望を持っていたのではなく、力の論理で仕方がなかったのだろう。

利根川工事の概略

最初の都市計画会議
 江戸の都市計画をめぐり、家臣たちの提案が続く。本多忠勝は、山を削って湿地を埋め立てようと提案。土井勝利は、江戸に流れ込む何本もの川の築堤を提案した。しかし、家康が採用したのは、かつて三河国の一向一揆で家康に背いた伊奈忠次の案だった。すなわち、江戸に流れ込む前に川を曲げる。というものだった。伊奈は、関東平野を2年にわたり調査した結果、その大本は利根川にあることを突き止めた。利根川を東に曲げ、渡良瀬川と合流させ浦安に流すというもの。完成の1621年まで着工から27年の歳月が流れた。結果として与えられた環境の中で最善を尽くすことが、思いもしない可能性を切り開いたことになった

江戸のフロンティア精神
 アメリカ合衆国の発展は、ヨーロッパの古い因習に縛られず、未知の大地に自由にその能力を発揮できたからだと、どこかで読んだ気がする。家康も駿河にいたままでは、天下は取れなかったのではないだろうか?関東という未開の地に対するフロンティア精神があったからこそ、江戸260年の礎を築くことができたように思う。その点で、トランプの『アメリカンファースト』は『引きこもり精神』とでも呼ぶべきものではないだろうか。今の利根川は千葉県銚子市で太平洋に注いでいる。古代・中世には、猿が又(葛飾区水元)、亀有付近で三川に分流して江戸湾(東京湾)に注いでいた。猿が又で東に分かれた流れは太井川に合流する。太井川は渡良瀬川の下流で、今の江戸川である。亀有でそのまま南下する川が中川であり、西へ分かれる川が隅田川(古隅田川)だった。この古隅田川は消滅したが、今の足立区と葛飾区の区境線に沿うようにして流れ、鐘ヶ淵(墨田5丁目)のあたりで入間川に合流した。埼玉県飯能市に源を発する入間川の流路が今の隅田川である。
 荒川もかつて埼玉県岩槻市付近で利根川に合流していた。1629年、荒川の河道を入間川に移した。入間川に荒川が合流する川越市古谷から下流も荒川に呼ぶようになった。明治44年、洪水対策のため北区岩淵で東に分流させる工事が始まり、昭和5年に完成した。これが荒川放水路であり、今の荒川である。

古代・中世の利根川と隅田川

地質時代 第8号 2017年5月8日発行

ローマ帝国と秦帝国の道路の歴史と『猿百匹の現象』

 英国の科学史家ジョセフ・ニーダム(1900-1995)は『紀元の前後数世紀における世界で、一つはイタリア半島の一角(古代ローマ)に、もう一つは中国で黄河の山西山脈の屈曲部あたり(長安)に、それぞれ(都市の)中心部から樹状に延びる道路交通網がお互いに何の関連もなく広がった』と記している。

アッピア街道

アッピア街道


   古代ローマの道路網は「すべての道はローマに通ず」のことわざに名高い、BC.312のアッピア街道の建設からはじまりトラヤヌス帝(98-117)時代には総延長29万キロ、主要幹線8万6千キロ(現在の米国は9万キロ)であった。道路のネットワークとしての機能を創造したのはローマ人であった。その目的は、軍隊の配置、役人の公用、生産物の輸送、民間人の移動であった。
 秦の始皇帝の道路網は、始皇帝が燕・韓・趙・魏・斉・楚(六国)を征服した翌年のBC.220に開始された。皇帝のみが通る道で「馳道」と呼ばれた。「馳道」は秦の首都咸陽を中心にして諸侯列国の首都を連接し、さらに全国に延びるものであった。その延長は7481キロとローマの十分の一であったが、その建設期間はわずか10年ほどであった。その目的は、全国統一と六国の貴族の復活の阻止、六国の財宝を咸陽に輸送すること、阿房宮ほか700ヶ所の宮殿建設の資材運搬をするためであった。もっぱら皇帝の私利私欲のための「馳(ち)道(どう)」であった。ローマの歴史1000年に対し、秦はわずか40年の背景には、道路をいかに使うのかに大きな差が生じたようである。(参考:中央新書 道路の日本史 武部健一著より)
 そこで、最初のニーダムの問題提起『~道路交通網がお互いに何の関連もなく広がった。』の一節でふと頭をよぎったのが『百匹目の猿現象』である。これは、宮崎県串間市の幸島に棲息する猿の一頭がイモを洗って食べるようになり、同行動を取る猿の数が群れ全体に広がり、さらに場所を隔てた大分県高崎山の猿の群れでも突然この行動が見られ

イモを洗うニホンザル

イモを洗うニホンザル

るようになったという現象である。

ウィキペディアによると、この現象に対して、「ある行動、考えなどが、ある一定数を超えると、これが接触のない同類の仲間にも伝播する」(船井幸雄の見解)という見解があり、もう一つは、「実際には存在しない現象で、疑似科学に分類される」(ウィキペディアの立場)というものである。この二つの見解は相反するようで実は同じ観念によって支配されている。前者は「そうあってほしい」という願望であり、後者は「そんなことは証明されえない」という思惑である。私には、両者とも同じ意見に聞こえてくる。本来ニホンザルの主食は果実、草食の樹上性のものであった。イモを食いだしたのは、戦後の食糧難の時代であり、森林伐採と都市化が進み、サルとて例外ではなかった。畑のイモはそれに変わるものだった。樹上のものは洗わずとも食えた、しかし畑のものは土だらけである。洗うのは当然ではないだろうか?どこのサルも食糧難、どこのサルも畑に目をつける、土がつけば洗う。つまりは、「戦後の食料難の時代が生み出したもの」というのが私の見解である。道路も同じ、「天下統一という歴史時代が生み出したもの」これが「何の関連もなく広がった」理由ではないだろうか?

浮き上がる!?上野駅と東京駅

 

江東区、墨田区、江戸川区の観測井の地下水変動図

            

 上のグラフは弊社が東京都土木技術・人材支援センターより受注し、平成28年1月から平成28年12月測定した業務の一年前の地下水位の変位データです。これによると、下町地区で昭和38年から47年に最大T.P.-58mだったのが平成27年にはT.P.-5m程度まで約43m近く地下水が上昇(回復)しています。
東京都では、昭和28年から毎年継続して地下水や地盤沈下を測定していますが、このような地下水の回復は、地盤沈下を収束させており地下水の取水規制の大きな成果といえます。

地下水上昇で浮き上がる駅舎を守る
① 新幹線の上野地下駅は地下4階建てで、地下30mの東京礫層を基礎としています。地下水位は設計時の昭和54年(1979年)には地下38mと基礎下8mにありましたが、平成6年(1994年)には地下14mまで上昇、さらに11.5mまでになり、専門家の計算では、なんと駅舎そのものが浮き上がることが明らかになりました。その対策が3万トンの鉄の錘を地下4階のホーム下に積み上げて並べました。2tの直方体の鉄の塊を15000個並べたとのことです。地下水の長期にわたる地道な測定が着工前に対策を立てられた大きな要因のように思います。
② 総武快速線の東京地下駅は地下5階建てで、地下27mで江戸川砂層の上に直接基礎で作られました。建設時の昭和47年(1972年)の地下水位は地下35mでしたが、平成10年(1998年)には地下15mと20mも上昇しました。このままあと1m上昇すると床の損傷が起き、あと2.5m上昇すると地下駅全体が浮き上がると予想されました。対策として上野駅のような錘方式が検討されましたが、地下水圧のもとでも施行できる新たに改良されたアンカーが費用と機能で優れていると判断されアンカー方式が採用されました。基礎と支持地盤とを接合し、1本のアンカーで100tの水圧に耐えられるものを130本うち、費用は上野駅の三分の一で済んだとのこと。水圧を受けながら掘削する技術革新が経費削減につながったようです。

地盤沈下によって抜きあがるように見える江戸川区の井戸

地盤沈下によって抜きあがるように見える江戸川区の井戸

豊洲市場、突然の基準値オーバーを推理する!

今まで、検出されなかったものが突如として検出されたのはなぜか?

唯一、合理的な推理は、地下水が遮水壁の下か隙間から汚染物質を引き寄せたのではないだろうか?

設計当初、遮水壁は、地下の不透水層に定着させ、地下水の流入はないとの説明があったが、一部地質の専門家からは、その地層が不透水層かどうか疑わしいとの意見が出されたが、市場側の説明は、「不透水層だ」というものだった。(議事録に残っている)

したがって、地下空間の水は雨水との見解を押し通したわけだが、遮水壁の外から流入した水であれば、水と一緒に汚染物質が流入したことによって説明はつく。

福島の原発でも地下水対策が最重要課題であったが豊洲でも地下水が問題となっている。

飲んでも大丈夫とはいうが、民間の土地売買では、基準値をちょっとでも超過すれば大問題になるのに70倍以上でも大丈夫は通用しないだろう。

葛飾区で地質調査の補助金30万円が支給されています

葛飾区は地盤の液状化に対して、区として、液状化判定に伴う補助金を支給しています。

詳しくは下記ホームページを参照してください。

http://www.city.katsushika.lg.jp/kurashi/1000059/1003399/1003416.html

この画期的制度は是非利用してください。

液状化判定の十分な調査が可能です。

地質時代 2016年4月第7号

平成28年熊本地震

Screenshot_1

 

今回の地震で亡くなられた方々のご冥福を祈るとともに、今もまだ、苦しい避難生活を送られている方々に、お見舞い申し上げます。

熊本地震の特徴は、第一、震度7が連続発生したこと。第二、86kmにわたる断層帯にそって広範囲に発生している事。第三、震度7が2回、6が5回、5が10回と大きな余震が続いていること。で、いずれも前例のない地震であり、正しい評価は、現段階では難しいようです。

地震の命名について

今回の地震は、「平成28年熊本地震」と気象庁が発表しましたが、気象庁の命名基準は、①陸域ではM 7.0以上震度5弱以上。②顕著な被害(全倒壊100棟程度以上)、③群発地震で被害が大きかった場合。名称の付け方は、「元号+地震情報に用いる地域名+地震」ですが、これとは別に政府が命名する場合があります。

気象庁命名「平成7年兵庫県南部地震」⇒政府命名「阪神・淡路大震災」
気象庁命名「平成23年東北地方太平洋沖地震」=政府命名「東日本大震災」
自然現象としての単なる地震ではなく、地震によって甚大な被害を蒙った事実を忘れないために「○○大震災」という名称は必要であるし、歴史にしっかり刻む必要があると思います。

地震の所轄機関はどうなっているのか?

  1. 気象庁(国土交通省外局):震度速報(震度3以上)、震源の情報、津波情報、各地の震度など
  2. 地震調査研究推進本部(文部科学省):行政施策に直結すべき地震の調査研究の責任体制を政府として一元的に推進するための機関。
  3. 地震予知連絡会(国土地理院):国の機関、大学等で進められる観測成果の集約と発表。
  4. 産総研地質調査所(経済産業省):地質調査のナショナルセンターとして地質情報の整備。

地震メカニズムについての機関は会計監査院あたりで交通整理すればもっと機能的になるかもしれない。他方で、災害対策にあたる機関もまた、自治体・自衛隊・警察・消防がその都度連携しているだけで、緊急物資の配分などSNSで各人が自然発生的に行っているのはいかがなものだろうか?地域コミュニティーの連携、情報集約と素早い初動活動のできる体制が望まれる。

関東地方の活断層と首都直下地震

Screenshot_2

1. 関谷断層(那須塩原、塩谷・M 7.5)
2. 内ノ龍断層(栃木県西部・M 6.6 )
3. 片品川左岸断層(群馬県北部・M 6.7 )
4. 大久保断層(前橋、桐生、足利・M7↑)
5. 太田断層(桐生、太田、千代田・M6.9)
6. 長野盆地西縁断層帯(M 7.4~ 7.8 )
7-1深谷断層帯(高崎、東松山・M 7.9 )
7-2綾瀬川断層(鴻巣、伊奈、川口M 7 )
8. 越生断層(越生町・M 6.7)
9. 立川断層帯(青梅、立川、府中・M7.4)
10. 鴨川低地断層帯(鴨川、富山町・M7.2)
11. 三浦半島断層群(三浦半島中南部・M6.6)
12. 伊勢原断層(愛川町、伊勢原、平塚・M7 )
13-1塩沢断層帯(山北町、御殿場・M6.8)
13-2平山-松田北断層帯(開成町・M6.8)
13-3国府津-松田断層帯(大井町・M6.8)
14. 曽根丘陵断層帯(笛吹、甲府・M 7.3 )
15. 富士川河口断層帯(富士宮、静岡・M7.2)
16. 身延断層(身延、富士宮・M 7 )
17. 北伊豆断層帯(箱根、湯河原、伊豆M7.3)
18. 伊東沖断層(M 6.7 )
19. 稲取断層帯(河津、伊豆大島西方沖・M7 )
20. 石廊崎断層(M 6.9~ 7 )
21.糸魚川 -静岡構造線断層帯(M 7.7)

2012年東京都防災会議は「首都直下地震等による東京の被害想定」の報告書を発表していますが、発表当時はかなりインパクトがありましたが、5年もたつとすっかり忘れていました。今度の地震でもう一度記憶に焼き付け、できうる防災対策で備えましょう!

地質時代 2015年4月第6号

玉川上水今昔物語

江戸は一日してならず

Screenshot_1

 

地質時代1号で、徳川家康は江戸入府に先立って、1594年~1654年に「利根川東遷」での関東平野の治水事業の実施を紹介しました。これに先立 つ1590年、家康は大久保藤五郎に水道の見立てを命じ、藤五郎は、小石川上水を作り上げたと伝えられています。その後、1629年には、井之頭池や善福 寺池・妙正寺池等の湧水を水源とする神田上水が完成。南西部では赤坂溜池を水源として利用していました。

1609年頃の江戸の人口は約15万人(スペイン人ロドリゴの見聞録)でしたが、3代将軍家光の時、参勤交代の制度が確立すると、人口増加に拍車がかかり、既存の水道では足りなくなり、新しい上水の開発が日程に上りました。

1652 年、幕府は多摩川の水を江戸に引き入れる計画を立てました。工事の総奉行に老中松平伊豆守信綱、工事請負人は庄右衛門と清右衛門兄弟に決定。水道奉行に伊 奈半十郎忠治が命ぜられました。1653年4月4日着工し11月15日に羽村取水口から四谷大木戸まで素掘りが完成。全長43km、高低差92mの緩勾配 です。180m/日の驚異的進捗率です。

翌年6月には虎ノ門まで地下に石樋、木樋による配水管を敷設、江戸城はじめ、四谷、麹町、赤坂、芝、京橋一帯に給水しました。兄弟は褒章に玉川の姓を賜り、200石の扶持米と永代水役を命ぜられました。

明治になると、末端の木樋に汚水が流入し、しばしばコレラが大流行するようになり、浄水場で原水ををろ過し、鉄管を通じて加圧給水する近代水道の建設が急務 となりました。1898年12月、玉川上水を導水路として、代田橋付近から淀橋浄水場までを結ぶ新水路を建設、神田、日本橋方面に給水を開始しました。1965年には、利根川の水が東京に導かれ、淀橋浄水場は廃止。玉川上水は導水路としての役割を終えました。1984年には、清流復活事業の一環で、昭島市の東京都下水道局多摩川上流再生センターで処理された再生水は、高井戸を経緯し、神田川に合流しています。

2012年、新宿区は、新宿御苑の北を走る国道20号線のトンネル上部に「玉川上水・内藤新宿分水散歩道」の供用を開始しました。水路の水源は、この地下トンネルの地下水をポンプアップして利用。ヒートアイランド現象の緩和にも期待されています。

Screenshot_2

関東地方の活断層

Screenshot_3

1.関谷断層
2.内ノ龍断層
3.片品川左岸断層
4.大久保断層
5.太田断層
6.長野盆地西縁断層帯
7-1深谷断層帯
7-2綾瀬川断層
8.越生断層
9.立川断層帯
10.鴨川低地断層帯
11.三浦半島断層群
12.伊勢原断層
13-1塩沢断層帯
13-2平山-松田北断層帯
13-3国府津-松田断層帯
14.曽根丘陵断層帯
15.富士川河口断層帯
16.身延断層
17.北伊豆断層帯
18.伊東沖断層
19.稲取断層帯
20.石廊崎断層
21.糸魚川-静岡構造線断層帯